
Priority Queues and Huffman Encoding
Introduction to Homework 7

Hunter Schafer

Paul G. Allen School of Computer Science - CSE 143



I Think You Have Some Priority Issues

ER Scheduling. How do we efficiently chose the most urgent case to
treat next? Patients with more serious ailments should go first.

OS Context Switching. How does your operating system decide which
process to give resources to? Some applications are more important than
others.

How can we solve these problems with the data structures we know?

1



I Think You Have Some Priority Issues

ER Scheduling. How do we efficiently chose the most urgent case to
treat next? Patients with more serious ailments should go first.

OS Context Switching. How does your operating system decide which
process to give resources to? Some applications are more important than
others.

How can we solve these problems with the data structures we know?

1



Possible Solution

• Store elements in an unsorted list
• add: Add at end
• remove: Search for highest priority element

• Store elements in a sorted LinkedList
• add: Search for position to insert, place there
• remove: remove from front

• Store elements in a TreeSet (hope they are unique!)
• add: Traverse tree for position to insert, place there
• remove: Traverse tree for smallest element, remove

2



Possible Solution

• Store elements in an unsorted list
• add: Add at end
• remove: Search for highest priority element

• Store elements in a sorted LinkedList
• add: Search for position to insert, place there
• remove: remove from front

• Store elements in a TreeSet (hope they are unique!)
• add: Traverse tree for position to insert, place there
• remove: Traverse tree for smallest element, remove

2



Priority Queue

Priority Queue

A collection of ordered elements that provides fast access to the
minimum (or maximum) element.

public class PriorityQueue<E> implements Queue<E>

PriorityQueue<E>() constructs an empty queue
add(E value) adds value in sorted order to the queue
peek() returns minimum element in queue
remove() removes/returns minimum element in queue
size() returns the number of elements in queue

Queue <String > tas = new PriorityQueue <String >();

tas.add("Jin");

tas.add("Aaron");

tas.remove ();
3



Priority Queue

Priority Queue

A collection of ordered elements that provides fast access to the
minimum (or maximum) element.

public class PriorityQueue<E> implements Queue<E>

PriorityQueue<E>() constructs an empty queue
add(E value) adds value in sorted order to the queue
peek() returns minimum element in queue
remove() removes/returns minimum element in queue
size() returns the number of elements in queue

Queue <String > tas = new PriorityQueue <String >();

tas.add("Jin");

tas.add("Aaron");

tas.remove (); // "Aaron"
3



Priority Queue Example

What does this code print?

Queue <TA> tas = new PriorityQueue <TA >();

tas.add(new TA("Kyle", 7));

tas.add(new TA("Ayaz", 3));

tas.add(new TA("Zach", 6));

System.out.println(tas);

Prints: [Ayaz: 3, Kyle: 7, Zach: 6]

Common Gotchas

• Elements must be Comparable.
• toString doesn’t do what you expect! Use remove instead.

4



Priority Queue Example

What does this code print?

Queue <TA> tas = new PriorityQueue <TA >();

tas.add(new TA("Kyle", 7));

tas.add(new TA("Ayaz", 3));

tas.add(new TA("Zach", 6));

System.out.println(tas);

Prints: [Ayaz: 3, Kyle: 7, Zach: 6]

Common Gotchas

• Elements must be Comparable.
• toString doesn’t do what you expect! Use remove instead.

4



Inside the Priority Queue

• Usually implemented with a heap
• Guarantees children have a lower priority than the parent so the

highest priority is at the root (fast access).
• Take CSE 332 or CSE 373 to learn about how to implement more

complicated data structures like heaps!

1

2

17

25 99

19

3

36 7

5



Homework 7: Huffman Coding



File Compression

Compression

Process of encoding information so that it takes up less space.

Compression applies to many things!

• Store photos without taking up the whole hard-drive
• Reduce size of email attachment
• Make web pages smaller so they load faster
• Make voice calls over a low-bandwidth connection (cell, Skype)

Common compression programs:
• WinZip, WinRar for Windows
• zip

6



ASCII

ASCII (American Standard Code for Information Interchange)

Standardized code for mapping characters to integers

We need to represent characters in binary so computers can read them.

• Most text files on your computer are in ASCII.

Every character is represented by a byte (8 bits).

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

7



ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

What is the binary representation of the following String?
cab z

Answer

8



ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

What is the binary representation of the following String?
cab z

Answer
01100011

8



ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

What is the binary representation of the following String?
cab z

Answer
01100011 01100001

8



ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

What is the binary representation of the following String?
cab z

Answer
01100011 01100001 01100010

8



ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

What is the binary representation of the following String?
cab z

Answer
01100011 01100001 01100010 00100000

8



ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

What is the binary representation of the following String?
cab z

Answer
01100011 01100001 01100010 00100000 01111010

8



ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

What is the binary representation of the following String?
cab z

Answer
0110001101100001011000100010000001111010

8



Another ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

How do we read the following binary as ASCII?
011000010110001101100101

Answer

9



Another ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

How do we read the following binary as ASCII?
01100001 01100011 01100101

Answer

9



Another ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

How do we read the following binary as ASCII?
01100001 01100011 01100101

Answer
a

9



Another ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

How do we read the following binary as ASCII?
01100001 01100011 01100101

Answer
ac

9



Another ASCII Example

Character ASCII value Binary Representation
‘ ’ 32 00100000
‘a’ 97 01100001
‘b’ 98 01100010
‘c’ 99 01100011
‘e’ 101 01100101
‘z’ 122 01111010

How do we read the following binary as ASCII?
01100001 01100011 01100101

Answer
ace

9



Huffman Idea

Huffman’s Insight

Use variable length encodings for different characters to take
advantage of frequencies in which characters appear.

• Make more frequent characters take up less space.
• Don’t have codes for unused characters.
• Some characters may end up with longer encodings,

but this should happen infrequently.

10



Huffman Encoding

• Create a “Huffman Tree” that gives a good binary representation for
each character.

• The path from the root to the character leaf is the encoding for that
character; left means 0, right means 1.

ASCII Table
Character Binary Representation

‘ ’ 00100000
‘a’ 01100001
‘b’ 01100010
‘c’ 01100011
‘e’ 01100101
‘z’ 01111010

Huffman Tree

0

0 1

0 1

1

‘b’

‘c’ ‘ ’

‘a’

11



Homework 7: Huffman Coding

Homework 7 asks you to write a class that manages creating and using
this Huffman code.

(A) Create a Huffman Code from a file and compress it.
(B) Decompress the file to get original contents.

12



Part A: Making a HuffmanCode Overview

Input File Contents
bad cab

Step 1: Count the occurrences of each character in file
{‘ ’=1, ‘a’=2, ‘b’=2, ‘c’=1, ‘d’=1}

Step 2: Make leaf nodes for all the characters put them in a PriorityQueue

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

Step 3: Use Huffman Tree building algorithm (described in a couple slides)
Step 4: Save encoding to .code file to encode/decode later.

{‘d’=00, ‘a’=01, ‘b’=10, ‘ ’=110, ‘c’=111}

Step 5: Compress the input file using the encodings
Compressed Output: 1001001101110110

13



Part A: Making a HuffmanCode Overview

Input File Contents
bad cab

Step 1: Count the occurrences of each character in file
{‘ ’=1, ‘a’=2, ‘b’=2, ‘c’=1, ‘d’=1}

Step 2: Make leaf nodes for all the characters put them in a PriorityQueue

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

Step 3: Use Huffman Tree building algorithm (described in a couple slides)
Step 4: Save encoding to .code file to encode/decode later.

{‘d’=00, ‘a’=01, ‘b’=10, ‘ ’=110, ‘c’=111}

Step 5: Compress the input file using the encodings
Compressed Output: 1001001101110110

13



Part A: Making a HuffmanCode Overview

Input File Contents
bad cab

Step 1: Count the occurrences of each character in file
{‘ ’=1, ‘a’=2, ‘b’=2, ‘c’=1, ‘d’=1}

Step 2: Make leaf nodes for all the characters put them in a PriorityQueue

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

Step 3: Use Huffman Tree building algorithm (described in a couple slides)
Step 4: Save encoding to .code file to encode/decode later.

{‘d’=00, ‘a’=01, ‘b’=10, ‘ ’=110, ‘c’=111}

Step 5: Compress the input file using the encodings
Compressed Output: 1001001101110110

13



Part A: Making a HuffmanCode Overview

Input File Contents
bad cab

Step 1: Count the occurrences of each character in file
{‘ ’=1, ‘a’=2, ‘b’=2, ‘c’=1, ‘d’=1}

Step 2: Make leaf nodes for all the characters put them in a PriorityQueue

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

Step 3: Use Huffman Tree building algorithm (described in a couple slides)

Step 4: Save encoding to .code file to encode/decode later.
{‘d’=00, ‘a’=01, ‘b’=10, ‘ ’=110, ‘c’=111}

Step 5: Compress the input file using the encodings
Compressed Output: 1001001101110110

13



Part A: Making a HuffmanCode Overview

Input File Contents
bad cab

Step 1: Count the occurrences of each character in file
{‘ ’=1, ‘a’=2, ‘b’=2, ‘c’=1, ‘d’=1}

Step 2: Make leaf nodes for all the characters put them in a PriorityQueue

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

Step 3: Use Huffman Tree building algorithm (described in a couple slides)
Step 4: Save encoding to .code file to encode/decode later.

{‘d’=00, ‘a’=01, ‘b’=10, ‘ ’=110, ‘c’=111}

Step 5: Compress the input file using the encodings
Compressed Output: 1001001101110110

13



Part A: Making a HuffmanCode Overview

Input File Contents
bad cab

Step 1: Count the occurrences of each character in file
{‘ ’=1, ‘a’=2, ‘b’=2, ‘c’=1, ‘d’=1}

Step 2: Make leaf nodes for all the characters put them in a PriorityQueue

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

Step 3: Use Huffman Tree building algorithm (described in a couple slides)
Step 4: Save encoding to .code file to encode/decode later.

{‘d’=00, ‘a’=01, ‘b’=10, ‘ ’=110, ‘c’=111}

Step 5: Compress the input file using the encodings
Compressed Output: 1001001101110110

13



Step 1: Count Character Occurrences

We do this step for you

Input File
bad cab

Generate Counts Array:

index 0 1

value 0 0
...

32

1
...

97 98 99 100 101

2 2 1 1 0
...

This is super similar to LetterInventory but works for all characters!

14



Step 2: Create PriorityQueue

• Store each character and its frequency in a HuffmanNode object.
• Place all the HuffmanNodes in a PriorityQueue so that they are in

ascending order with respect to frequency

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

15



Step 3: Remove and Merge

pq ←− ‘ ’
freq: 1

‘c’
freq: 1

‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

16



Step 3: Remove and Merge

freq: 2

‘ ’
freq: 1

‘c’
freq: 1

pq ←− ‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2 ←−

16



Step 3: Remove and Merge

pq ←− ‘d’
freq: 1

‘a’
freq: 2

‘b’
freq: 2

freq: 2

‘ ’
freq: 1

‘c’
freq: 1

←−

16



Step 3: Remove and Merge

freq: 3

‘d’
freq: 1

‘a’
freq: 2

pq ←− ‘b’
freq: 2

freq: 2

‘ ’
freq: 1

‘c’
freq: 1

←−

16



Step 3: Remove and Merge

pq ←− ‘b’
freq: 2

freq: 2

‘ ’
freq: 1

‘c’
freq: 1

freq: 3

‘d’
freq: 1

‘a’
freq: 2

←−

16



Step 3: Remove and Merge

freq: 4

‘b’
freq: 2 freq: 2

‘ ’
freq: 1

‘c’
freq: 1

pq ←−

freq: 3

‘d’
freq: 1

‘a’
freq: 2

←−

16



Step 3: Remove and Merge

pq ←−

freq: 3

‘d’
freq: 1

‘a’
freq: 2

freq: 4

‘b’
freq: 2 freq: 2

‘ ’
freq: 1

‘c’
freq: 1

←−

16



Step 3: Remove and Merge

freq: 7

freq: 3

‘d’
freq: 1

‘a’
freq: 2

freq: 4

‘b’
freq: 2 freq: 2

‘ ’
freq: 1

‘c’
freq: 1

pq ←− ←−

16



Step 3: Remove and Merge

pq ←−

freq: 7

freq: 3

‘d’
freq: 1

‘a’
freq: 2

freq: 4

‘b’
freq: 2 freq: 2

‘ ’
freq: 1

‘c’
freq: 1

←−

16



Step 3: Remove and Merge

pq ←−

freq: 7

freq: 3

‘d’
freq: 1

‘a’
freq: 2

freq: 4

‘b’
freq: 2 freq: 2

‘ ’
freq: 1

‘c’
freq: 1

←−

• What is the relationship between frequency in file and binary
representation length?

16



Step 3: Remove and Merge Algorithm

Algorithm Pseudocode

while P.Q. size > 1:

remove two nodes with lowest frequency

combine into a single node

put that node back in the P.Q.

17



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

18



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

Output of save

18



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

Output of save

100

00

18



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

Output of save

100

00

97

01

18



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

Output of save

100

00

97

01

98

10

18



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

Output of save

100

00

97

01

98

10

32

110

18



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

Output of save

100

00

97

01

98

10

32

110

99

111

18



Step 5: Compress the File

We do this step for you

Take the original file and the .code file produced in last step to translate
into the new binary encoding.

Input File
bad cab

Compressed Output

Huffman Encoding

100

00

97

01

98

10

32

110

99

111

19



Step 5: Compress the File

We do this step for you

Take the original file and the .code file produced in last step to translate
into the new binary encoding.

Input File
bad cab

Compressed Output

Huffman Encoding

100 'd'

00

97 'a'

01

98 'b'

10

32 ' '

110

99 'c'

111

19



Step 5: Compress the File

We do this step for you

Take the original file and the .code file produced in last step to translate
into the new binary encoding.

Input File
bad cab

Compressed Output
10 01 100 110 111 01 10

Huffman Encoding

100 'd'

00

97 'a'

01

98 'b'

10

32 ' '

110

99 'c'

111

19



Step 5: Compress the File

We do this step for you

Take the original file and the .code file produced in last step to translate
into the new binary encoding.

Input File
bad cab

Compressed Output
10 01 100 110 111 01 10

Uncompressed Output
01100010 01100001 01100100
00100000 01100011 01100001
01100010

Huffman Encoding

100 'd'

00

97 'a'

01

98 'b'

10

32 ' '

110

99 'c'

111

19



Part B: Decompressing the File

Step 1: Reconstruct the Huffman tree from the code file
Step 2: Translate the compressed bits back to their character values.

20



Step 1: Reconstruct the Huffman Tree

Now are just given the code file produced by our program and we need to
reconstruct the tree.

Input code File
97
0
101
100
32
101
112
11

Initially the tree is empty

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

21



Step 1: Reconstruct the Huffman Tree

Now are just given the code file produced by our program and we need to
reconstruct the tree.

Input code File
97
0
101
100
32
101
112
11

Tree after processing first pair

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

21



Step 1: Reconstruct the Huffman Tree

Now are just given the code file produced by our program and we need to
reconstruct the tree.

Input code File
97
0
101
100
32
101
112
11

Tree after processing second pair

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

21



Step 1: Reconstruct the Huffman Tree

Now are just given the code file produced by our program and we need to
reconstruct the tree.

Input code File
97
0
101
100
32
101
112
11

Tree after processing third pair

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

21



Step 1: Reconstruct the Huffman Tree

Now are just given the code file produced by our program and we need to
reconstruct the tree.

Input code File
97
0
101
100
32
101
112
11

Tree after processing last pair

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

21



Step 2 Example

After building up tree, we will read the compressed file bit by bit.

Input
0101110110101011100

Output
0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

22



Step 2 Example

After building up tree, we will read the compressed file bit by bit.

Input
0101110110101011100

Output
a papa ape

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

22



Working with Bits? That Sounds a Little Bit Hard

Reading bits in Java is kind of tricky, we are providing a class to help!

public class BitInputStream

BitInputStream(String file) Creates a stream of bits from file
hasNextBit() Returns true if bits remain in the stream
nextBit() Reads and returns the next bit in the

stream

23



Review - Homework 7

Part A: Compression

public HuffmanCode(int[] counts)

• Slides 15-17

public void save(PrintStream out)

• Slide 18

Part B: Decompression

public HuffmanCode(Scanner input)

• Slide 21

public void translate(BitInputStream in,

PrintStream out)

• Slide 22
24


